AWS

Analyzing Streaming Data in Real-Time
with Amazon Kinesis Analytics

Dr. Steffen Hausmann, Solutions Architect, AWS

May 18, 2017

eeeeeeeeeeeee
© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon Kinesis makes it easy to work with
real-time streaming data

Amazon Kinesis
Streams
* For technical developers

* Collect and stream data
for ordered, replayable,
real-time processing

Amazon Kinesis
Firehose

For all developers, data
scientists

Easily load massive
volumes of streaming data
into Amazon S3, Amazon
Redshift, Amazon
Elasticsearch Service

Amazon Kinesis
Analytics
For all developers, data
scientists

Easily analyze data
streams using standard
SQL queries

Amazon Kinesis Analytics

N,
Easy to use
@@ Automatic elasticity

b Real-time processing
@ Pay for only what you use

Standard SQL for analytics

Connect to streaming source

« Streaming data sources include Amazon
Kinesis Firehose or Amazon Kinesis Streams

 Input formats include JSON, .csv, variable
column, or unstructured text

ﬁﬁ: Each input has a schema; schema is inferred,
but you can edit

« Reference data sources (S3) for data
enrichment

UUUUUU
111111

((((((((((
111111

Write SQL code

111111
\\\\\\\\\\

UUUUUU
111111

(((((((((
000000

Build streaming applications with one-to-many
SQL statements

Robust SQL support and advanced analytic
functions

Extensions to the SQL standard to work
seamlessly with streaming data

Support for at-least-once processing
semantics

Continuously deliver SQL results

« Send processed data to multiple destinations

« S3, Amazon Redshift, Amazon ES (through
Firehose)

« Streams (with AWS Lambda integration for
'ﬁ' custom destinations)
X

« End-to-end processing speed as low as sub-
second

« Separation of processing and data delivery

uuuuu
111111

What are common uses for
Amazon Kinesis Analytics?

Generate time series analytics

« Compute key performance indicators over time periods
« Combine with static or historical data in S3 or Amazon Redshift

Amazon
E% Redshift
Firehose *

S3

Analytics
Custom, real-
time

Streams Streams destinations

b=

Firehose

Feed real-time dashboards

meaningful statistics

visualization services

P

E) Amazon ES
|
Firechose .

Amazon
Redshift

B Analytics .

Streams

Amazon
RDS

Validate and transform raw data, and then process to calculate

Send processed data downstream for visualization in Bl and

Kibana

{

Amazon
QuickSight

e
yiptableav

Create real-time alarms and notifications

» Build sequences of events from the stream, like user sessions in a
clickstream or app behavior through logs

 |dentify events (or a series of events) of interest, and react to the
data through alarms and notifications ‘

— Amazon
. SNS
Firehose .
E ~”

Streams Amazon
CloudWatch

E Analytics

Streams

Lambda

@ Example: Bundesliga Tweet
Analysis

-

(1]
sEEramazon
L7 webservices

Example Scenario Requirements

Data to capture
* Filter for soccer-related tweets

« Total number of tweets per hour that contain hashtags for
soccer teams

 Top 5 mentioned teams names per hour

Output Requirements

 Filtered tweets are saved to Amazon S3

« Hourly aggregate count is saved to Amazon ES

« Full team name of top 5 hashtags are saved to Amazon ES

Why use Amazon Kinesis Analytics for this solution?

Challenges
« Twitter stream can be noisy

« Tweet structure is complex, with several levels of
nested JSON

* soccer-related tweet volume is cyclical

With Amazon Kinesis Analytics:

« Easily filter out unwanted tweets

 Normalize tweet schema for simple SQL queries
« Automatically scale to meet demand

End-to-End Architecture

y-8

mstance

Reference
data
8 Amazon
Kinesis

Kinesis Amazon
Streams Kinesis

Analytics

o8

(L

Amazon
Elasticsearch
Service

Amazon S3

How is streaming data accessed with SQL?

STREAM
* Analogous to a TABLE
« Represents continuous data flow

CREATE OR REPLACE STREAM "B TWEET STREAM™ (
ID BIGINT, TWEET TEXT VARCHAR(140), HASHTAG VARCHAR(140));

PUMP
« Continuous INSERT query
* Inserts data from one in-application stream to another

CREATE OR REPLACE PUMP ”“BIL TWEET PUMP" AS
INSERT INTO ”BL TWEET STREAM"
SELECT STREAM * FROM .

Kinesis Analytics Application Overview

SOURCE_STREAM BL_TWEET_STREAM
*id —@—0 *ID —
8 7 etext “TEXT E:

tag *HASHTAG

Amazon Amazon Kinesis
Kinesis Firehose
stream

A
F @ * “TWEET_COUNT

TOTAL_TWEETS_STREAM
’ ?i

Amazon Kinesis

Firehose
TeamName MENTION_COUNT_STREAM

- hashtag * “TEAMNAME >
. team MENTIONCOUNT

®

T

How are tweets mapped to a schema?

i o0

Amazon Kinesis stream Amazon Kinesis Analytics

{
"id": 795296435386388500,
"text": "#FCB Spiel heute Abend! #bl",
"Created_at": "11—06—2016 1607300", 795 #FCB 11'06'2016 FCB
‘tagst: 795... #FCB... 11-06-2016... bl
Htag": /IFCB"
||
"tagh: “bl Source data for
}] Amazon Kinesis Analytics

How do we filter unwanted tweets?

»
etext *TEXT

tag *HASHTAG

Use PUMP to insert filtered data into STREAM

CREATE OR REPLACE PUMP ”BI TWEET PUMP" AS
INSERT INTO ”BL TWEET STREAM"
SELECT STREAM "id", "text", LOWER("tag")
FROM "SOURCE STREAM"
WHERE LOWER("tag") NOT IN (‘bl’, ‘bundesliga’);

How do we get team name from the hashtag?

* Create CSV file with hashtag to team name map in S3

« Configure Amazon Kinesis Analytics application to import
file as reference data

* Reference data appears as a table

« Join streaming data on reference data

s3://mybucket/team_map.csv

hashtag, team

FCB,FC Bayern Munchen
Bayern, FC Bayern Munchen
BVB, Borussia Dortmund
Borussia,Borussia Dortmund
TSV, TSV 1860 Minchen

Use Reference Data in Query

" hashtag
* team

s3://mybucket/team_map.csv

FCB, FC Bayern Miunchen
Bayern, FC Bayern Munchen
BVB, Borussia Dortmund
Borussia,Borussia Dortmund
TSV, TSV 1860 Minchen

1D
*TEXT
*HASHTAG

FC Bayern Munchen
FC Bayern Munchen

<:> Werder Bremen

Borussia Dortmund
Hertha BSC

SELECT STREAM tn."team"
FROM ”“BL TWEET STREAM" tweets
INNER JOIN "TeamName" tn
ON tweets."HASHTAG" =
LOWER (tn."hashtag")

How do we aggregate streaming data?

* A common requirement in streaming
analytics is to perform set-based operation(s)
(count, average, max, min,..) OVer events
that arrive within a specified period of time

« Cannot simply aggregate over an entire table
like typical static database

 How do we define a subset in a potentially infinite
stream?

* Windowing functions!

Windowing Concepts

* Windows can be tumbling or sliding
« Windows are fixed length

54. _____ Window1 .----- .>E<_____ Window2 ----- .>E<. ______ Window3 .----- >
i an Bn
t t 3 ta t5 t6
Aggregate | |
Function (Sum) v v
Output Events K

Output record will have the timestamp of the end of the window

How do we aggregate team mentions per hour?

- Use TOP K ITEMS TUMBLING function

« Pass cursor to team name stream
« Define window size of 3600 seconds

INSERT INTO "MENTION COUNT STREAM"
SELECT STREAM *
FROM TABLE (TOP K ITEMS TUMBLING (
CURSOR (SELECT STREAM tn."team"...),
'"teamname', —-- name of column to aggregate
5, ——- number of top items
3600 == tumbling window size 1in seconds

)) s

Output to Amazon Kinesis Firehose

*TEAMNAME Pi
*MENTIONCOUNT

Amazon
Kinesis Firehose

»
L

! Amazon
. Elasticsearch
Service

5 records, every hour

"aggregationtime": "2016-11-06T14:42:03.335",
"teamname": "Hertha BSC",
"mentioncount": 604

Sum of MENTIONCOUNT

Visualize Results with Kibana

4,500 Legend ©

4,000

@ Chicago Blackhawks

3,500
3,000
2,500
2,000
1,500
Sum of MENTIONCOUNT 2,501
Top 5 TEAMNAME Chicago Blackhawks
1000 AGGREGATIONTIME per hour November 19th 2016, 23:00:00.000
0

2016-11-19 06:00 2016-11-19 09:00 2016-11-19 12:00 2016-11-19 15:00 2016-11-19 18:00 2016-11-19 21:00 2016-11-20 00:00 2016-11-20 03:00
AGGREGATIONTIME per hour

@
S

Amazon Kinesis Analytics
Best Practices

-

III:
w

)
S

azon
vices

ser

o

wel

Managing Applications

@ Set up Cloudwatch Alarms
e MillisBehindLatest metric tracks how far
behind the application is from the source

« Alarmon MillisBehindLatest metric.
Consider triggering when 1-hour behind, on a
1-minute average. Adjust accordingly for

applications with lower end-to-end processing
needs.

Managing Applications

Increase input parallelism to improve
performance

= + By default, a single source in-application

stream is created

« |If application is not keeping up with input
stream, consider increasing input parallelism to
create multiple source in-application streams

Managing Applications

Limit number of applications reading from
same source

 Avoid ReadProvisionedThroughputExceeded
exceptions

 For an Amazon Kinesis Streams source, limit
to 2 total applications

 For an Amazon Kinesis Firehose source, limit
to 1 application

Defining Input Schema

* Review and adequately test inferred input
schema
/ * Manually update schema to handle nested
JSON with greater than 2 levels of depth

« Use SQL functions in your application for
unstructured data

Authoring Application Code

* Avoid time-based windows greater than one
hour

« Keep window sizes small during development

« Use smaller SQL queries, with multiple in-
application streams, rather than a single, large

query

AWS

Thank youl!

_ Nuis
uwamazon

¥ webservices

