
© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Dr. Steffen Hausmann, Solutions Architect, AWS

May 18, 2017

Analyzing Streaming Data in Real-Time 
with Amazon Kinesis Analytics



Amazon Kinesis makes it easy to work with 
real-time streaming data

Amazon Kinesis 
Streams

• For technical developers
• Collect and stream data 

for ordered, replayable, 
real-time processing

Amazon Kinesis 
Firehose

• For all developers, data 
scientists 

• Easily load massive 
volumes of streaming data 
into Amazon S3, Amazon 
Redshift, Amazon 
Elasticsearch Service

Amazon Kinesis 
Analytics 

• For all developers, data 
scientists 

• Easily analyze data 
streams using standard 
SQL queries



Amazon Kinesis Analytics

Pay for only what you use

Automatic elasticity

Standard SQL for analytics

Real-time processing

Easy to use



Connect to streaming source

• Streaming data sources include Amazon 
Kinesis Firehose or Amazon Kinesis Streams

• Input formats include JSON, .csv, variable 
column, or unstructured text

• Each input has a schema; schema is inferred, 
but you can edit

• Reference data sources (S3) for data 
enrichment



Write SQL code

• Build streaming applications with one-to-many 
SQL statements

• Robust SQL support and advanced analytic 
functions

• Extensions to the SQL standard to work 
seamlessly with streaming data

• Support for at-least-once processing 
semantics



Continuously deliver SQL results

• Send processed data to multiple destinations
• S3, Amazon Redshift, Amazon ES (through 

Firehose)
• Streams (with AWS Lambda integration for 

custom destinations)
• End-to-end processing speed as low as sub-

second
• Separation of processing and data delivery 



What are common uses for 
Amazon Kinesis Analytics?



Generate time series analytics

• Compute key performance indicators over time periods
• Combine with static or historical data in S3 or Amazon Redshift

Analytics

Streams

Firehose

Amazon 
Redshift

S3

Streams

Firehose

Custom, real-
time 

destinations



Feed real-time dashboards

• Validate and transform raw data, and then process to calculate 
meaningful statistics

• Send processed data downstream for visualization in BI and 
visualization services

Amazon 
QuickSight

Analytics

Amazon ES

Amazon 
Redshift

Amazon
RDS

Streams

Firehose



Create real-time alarms and notifications

• Build sequences of events from the stream, like user sessions in a 
clickstream or app behavior through logs 

• Identify events (or a series of events) of interest, and react to the 
data through alarms and notifications

Analytics

Streams

Firehose

Streams

Amazon
SNS

Amazon 
CloudWatch

Lambda



Example: Bundesliga Tweet 
Analysis



Example Scenario Requirements

Data to capture
• Filter for soccer-related tweets
• Total number of tweets per hour that contain hashtags for 

soccer teams
• Top 5 mentioned teams names per hour

Output Requirements
• Filtered tweets are saved to Amazon S3
• Hourly aggregate count is saved to Amazon ES
• Full team name of top 5 hashtags are saved to Amazon ES



Why use Amazon Kinesis Analytics for this solution?

Challenges
• Twitter stream can be noisy
• Tweet structure is complex, with several levels of 

nested JSON
• soccer-related tweet volume is cyclical

With Amazon Kinesis Analytics:
• Easily filter out unwanted tweets
• Normalize tweet schema for simple SQL queries
• Automatically scale to meet demand



End-to-End Architecture

Amazon 
Kinesis 
Streams

Amazon 
Kinesis 

Analytics

Amazon 
Kinesis 

Firehose

Amazon 
Elasticsearch

Service

Amazon S3

EC2 
instance

Reference
data



How is streaming data accessed with SQL?
STREAM
• Analogous to a TABLE
• Represents continuous data flow

CREATE OR REPLACE STREAM ”BL_TWEET_STREAM" (
ID BIGINT, TWEET_TEXT VARCHAR(140), HASHTAG VARCHAR(140));

PUMP
• Continuous INSERT query 
• Inserts data from one in-application stream to another

CREATE OR REPLACE PUMP ”BL_TWEET_PUMP" AS
INSERT INTO ”BL_TWEET_STREAM"

SELECT STREAM * FROM . . .



Kinesis Analytics Application Overview

BL_TWEET_STREAM

•ID
•TEXT
•HASHTAG

TOTAL_TWEETS_STREAM

•TWEET_COUNT

MENTION_COUNT_STREAM

•TEAMNAME
•MENTIONCOUNT

SOURCE_STREAM

•id
•text
•tag

Amazon 
Kinesis
stream

Amazon Kinesis
Firehose

Amazon Kinesis
FirehoseTeamName

• hashtag
• team



How are tweets mapped to a schema?

Amazon Kinesis stream Amazon Kinesis Analytics

{
  "id": 795296435386388500,
  "text": "#FCB Spiel heute Abend! #bl",
  "created_at": "11-06-2016 16:07:00",
  "tags": [{
    "tag": ”FCB"
    }, {
    "tag": ”bl"
    }]
}

id text created_at tag

795… #FCB… 11-06-2016… FCB

795… #FCB… 11-06-2016… bl

Source data for 
Amazon Kinesis Analytics



How do we filter unwanted tweets?

Use PUMP to insert filtered data into STREAM
 

BL_TWEET_STREAM

•ID
•TEXT
•HASHTAG

SOURCE_STREAM

•id
•text
•tag

CREATE OR REPLACE PUMP ”BL_TWEET_PUMP" AS 
 INSERT INTO ”BL_TWEET_STREAM"
  SELECT STREAM "id", "text", LOWER("tag")
  FROM "SOURCE_STREAM"
  WHERE LOWER("tag") NOT IN (‘bl’,‘bundesliga’);



How do we get team name from the hashtag?
• Create CSV file with hashtag to team name map in S3
• Configure Amazon Kinesis Analytics application to import 

file as reference data
• Reference data appears as a table
• Join streaming data on reference data 

hashtag,team
FCB,FC Bayern München
Bayern,FC Bayern München
BVB,Borussia Dortmund
Borussia,Borussia Dortmund
TSV,TSV 1860 München

s3://mybucket/team_map.csv



Use Reference Data in Query

SELECT STREAM tn."team"
FROM ”BL_TWEET_STREAM" tweets
INNER JOIN "TeamName" tn
 ON tweets."HASHTAG" =   
 LOWER(tn."hashtag") 

TeamName

• hashtag
• team

BL_TWEET_STREAM

•ID
•TEXT
•HASHTAG

FCB,FC Bayern München
Bayern,FC Bayern München
BVB,Borussia Dortmund
Borussia,Borussia Dortmund
TSV,TSV 1860 München

s3://mybucket/team_map.csv

FC Bayern München
FC Bayern München
Werder Bremen
Borussia Dortmund
Hertha BSC



How do we aggregate streaming data?

• A common requirement in streaming 
analytics is to perform set-based operation(s) 
(count, average, max, min,..) over events 
that arrive within a specified period of time

• Cannot simply aggregate over an entire table 
like typical static database

• How do we define a subset in a potentially infinite 
stream?

• Windowing functions! 



Windowing Concepts
• Windows can be tumbling or sliding
• Windows are fixed length

Output record will have the timestamp of the end of the window

1 5 4 26 8 6 4

t1 t2 t5 t6t3 t4

Time

Window 1 Window 2 Window 3

Aggregate
Function (Sum)

18 14Output Events



How do we aggregate team mentions per hour?
• Use TOP_K_ITEMS_TUMBLING function
• Pass cursor to team name stream 
• Define window size of 3600 seconds

INSERT INTO "MENTION_COUNT_STREAM" 
 SELECT STREAM * 
    FROM TABLE(TOP_K_ITEMS_TUMBLING( 
      CURSOR(SELECT STREAM tn."team"... ),
      'teamname', -- name of column to aggregate
      5, -- number of top items
      3600 -- tumbling window size in seconds
      ));



Output to Amazon Kinesis Firehose
MENTION_COUNT_STREAM

•TEAMNAME
•MENTIONCOUNT

Amazon
Elasticsearch

Service

KibanaAmazon 
Kinesis Firehose

{
 "aggregationtime": "2016-11-06T14:42:03.335",
 "teamname": "Hertha BSC",
 "mentioncount": 604 
}

5 records, every hour



Visualize Results with Kibana



Amazon Kinesis Analytics 
Best Practices



Managing Applications

Set up Cloudwatch Alarms
• MillisBehindLatest metric tracks how far 

behind  the application is from the source
• Alarm on MillisBehindLatest metric.  

Consider triggering when 1-hour behind, on a 
1-minute average.  Adjust accordingly for 
applications with lower end-to-end processing 
needs.



Managing Applications

Increase input parallelism to improve 
performance 
• By default, a single source in-application 

stream is created
• If application is not keeping up with input 

stream, consider increasing input parallelism to 
create multiple source in-application streams



Managing Applications

Limit number of applications reading from 
same source
• Avoid ReadProvisionedThroughputExceeded

exceptions
• For an Amazon Kinesis Streams source, limit 

to 2 total applications
• For an Amazon Kinesis Firehose source, limit 

to 1 application



Defining Input Schema

• Review and adequately test inferred input 
schema

• Manually update schema to handle nested 
JSON with greater than 2 levels of depth

• Use SQL functions in your application for 
unstructured data



Authoring Application Code

• Avoid time-based windows greater than one 
hour

• Keep window sizes small during development
• Use smaller SQL queries, with multiple in-

application streams, rather than a single, large 
query



Thank you!


