
© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Christian Deger, Chief Architect, AutoScout24
Dr. Steffen Hausmann, Solutions Architect, AWS

May 18, 2017

Real-time Streaming Applications
on AWS – Patterns and Use Cases

Most data is produced continuously

Mobile apps Web clickstream Application logs

Metering records IoT sensors Smart buildings

[Wed Oct 11 14:32:52
2000] [error] [client
127.0.0.1] client
denied by server
configuration:
/export/home/live/ap/h
tdocs/test

Simple Pattern for Streaming Data

Continuously creates
data

Continuously writes
data to a stream

Can be almost
anything

Data Producer

Durably stores data

Provides temporary
buffer

Supports very high-
throughput

Streaming Storage

Continuously
processes data

Cleans, prepares, &
aggregates

Transforms data to
information

Data Consumer

Mobile Client Amazon Kinesis Amazon Kinesis app

Amazon Kinesis: Streaming Data Made Easy
Services make it easy to capture, deliver, process streams on AWS

Amazon Kinesis
Streams

Amazon Kinesis
Analytics

Amazon Kinesis
Firehose

Amazon Kinesis Streams

• Easy administration
• Build real time applications with framework of choice
• Low cost

Amazon Kinesis Client Library

• Build applications with Kinesis Client Library (KCL) in
Java, .NET, Ruby, Python, or Node.JS

• Deploy on your EC2 instances
• Two primary components:

1. Record Processor – Processor unit that processes data from
a shard in Amazon Kinesis Streams

2. Worker – Processing unit that maps to each application
instance

• Key features include load balancing, check pointing and
CloudWatch metrics

AWS Lambda

• Function code triggered from newly arriving events
• Simple event-based processing of records
• Serverless processing with low administration

Social media stream is loaded
into Kinesis in real-time

Lambda runs code that generates hashtag
trend data and stores it in DynamoDB

Social media trend data
immediately available
for business users to

query
LAMBDASTREAMS DYNAMODB

Amazon Elastic Map Reduce (EMR)

• Ingest streaming data from many sources
• Easily configure clusters with latest versions of open

source frameworks
• Less underlying performance management

Ingest streaming data
through Amazon Kinesis

Streams

Your choice of stream
data processing engine,

Spark Streaming or Apache Flink

EMRSTREAMS S3

Send processed
data to S3, HDFS,

or a custom
destination using
an open source

connector

Amazon Kinesis Firehose

• Zero administration and seamless elasticity
• Direct-to-data store integration
• Continuous data transformations

Capture and submit
streaming data

Analyze streaming data using
your favorite BI tools

Firehose loads streaming data
continuously into Amazon S3, Redshift
and Elasticsearch

Easily capture, process, and deliver data

• Write data to a Firehose
delivery stream from a
variety of sources

• Transform, encrypt, and/or
compress data along the
way

• Buffer and aggregate data
by time and size before it is
written to destination

• Elastically scales with no
resource provisioning

AWS Platform SDKs Mobile SDKs Kinesis Agent AWS IoT

Amazon
S3

Amazon
Redshift

Amazon Kinesis Firehose

Amazon
Elasticsearch Service

Amazon Kinesis Analytics

• Apply SQL on streams
• Build real-time, stream processing applications
• Easy scalability

Connect to Kinesis streams,
Firehose delivery streams

Run standard SQL queries
against data streams

Kinesis Analytics can send processed data
to analytics tools so you can create alerts

and respond in real-time

Streaming
Ingest-Transform-Load

• Ingest and store raw data at high volume
• Atomic transformations
• Simple data enrichment

Continuous Metric
Generation

• Windowed analytics (count X over 5 minutes)
• Event correlation like sessionization
• Visualization

Actionable Insights
• Act on the data by triggering events or alerts
• Machine learning
• Real-time feedback loops

Stream Processing Use Cases

Use Case Characteristics

Try these use cases yourself

Many variations of these use cases have sample code on the AWS Big
Data Blog. Follow the blog!

• Analyzing VPC Flow Logs with Amazon Kinesis Firehose, Amazon
Athena, and Amazon QuickSight

• Build a Real-time Stream Processing Pipeline with Apache Flink on
AWS

• Real-time Clickstream Anomaly Detection with Amazon Kinesis
Analytics

• Writing SQL on Streaming Data with Amazon Kinesis Analytics |
Part 1, Part 2

© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Christian Deger, Chief Architect, AutoScout24

Streaming Use Cases at
AutoScout24

STRATEGIC
GOALS
Goals of the business side

ARCHITECTURAL
PRINCIPLES
High-Level Principles

DESIGN AND DELIVERY
PRINCIPLES
Tactical measures

REDUCE TIME TO MARKET
Establish fast feedback loops to learn, validate and
improve. Remove friction, hand-offs and undifferentiated
work.

MOBILE FIRST
Start small and use device capabilities.

SUPPORT DATA-DRIVEN DECISIONS
Provide relevant metrics and data for user and market
insights. Validate hypothesis for problems worth solving.

YOU BUILT IT, YOU RUN IT
The team is responsible for shaping, building, running and
maintaining its products. Fast feedback from live and
customers helps us to continuously improve.

ORGANIZED AROUND BUSINESS CAPABILITIES
Build teams around products not projects. Follow the
domain and respect bounded contexts. Make boundaries
explicit. Inverse Conway Maneuver.

LOOSELY COUPLED
By default avoid sharing and tight coupling.
No integration database. Don’t create the next monolith.

MACRO AND MICRO ARCHITECTURE
Clear separation. Autonomous micro services within the
rules and constraints of the macro architecture.

AWS FIRST
Favor AWS platform service over managed service,
over self-hosted OSS, over self built solutions.

DATA-DRIVEN/METRIC-DRIVEN
Collect business and operational metrics. Analyze, alert
and act on them.

ELIMINATE ACCIDENTAL COMPLEXITY
Strive to keep it simple. Don’t over-engineer.
Focus on necessary domain complexity.

AUTONOMOUS TEAMS
Make fast local decisions. Be responsible. Know your
boundaries. Share findings.

INFRASTRUCTURE AS CODE
Automate everything: Reproducible, traceable, auditable
and tested. Immutable servers.

CROSS-FUNCTIONAL TEAMS
Engineers from all backgrounds work together in
collaborative teams as engineers and share
responsibilities. No silos.

BE BOLD
Go into production early. Value monitoring over tests.
Fail fast, recover and learn. Optimize for MTTR not MTBF.

SECURITY, COMPLIANCE AND DATA PRIVACY
Build with least privilege and data privacy in mind.
Know your threat model. Limit blast radius.

COST EFFICIENCY
Run your segment in the right balance of cost and value.

ONE SCOUT IT
Foster collaboration. Harmonize and standardize tools.
Pull common capabilities into decoupled platform services.

Version 2.0
Icons made by Freepik from www.flaticon.com are licensed under CC BY 3.0

BEST TALENT
Autonomy, purpose and mastery: We know why we do
things, we decide how to approach them and deliberately
practice our skills.

STRATEGIC
GOALS
Goals of the business side

ARCHITECTURAL
PRINCIPLES
High-Level Principles

DESIGN AND DELIVERY
PRINCIPLES
Tactical measures

REDUCE TIME TO MARKET
Establish fast feedback loops to learn, validate and
improve. Remove friction, hand-offs and undifferentiated
work.

MOBILE FIRST
Start small and use device capabilities.

SUPPORT DATA-DRIVEN DECISIONS
Provide relevant metrics and data for user and market
insights. Validate hypothesis for problems worth solving.

YOU BUILT IT, YOU RUN IT
The team is responsible for shaping, building, running and
maintaining its products. Fast feedback from live and
customers helps us to continuously improve.

ORGANIZED AROUND BUSINESS CAPABILITIES
Build teams around products not projects. Follow the
domain and respect bounded contexts. Make boundaries
explicit. Inverse Conway Maneuver.

LOOSELY COUPLED
By default avoid sharing and tight coupling.
No integration database. Don’t create the next monolith.

MACRO AND MICRO ARCHITECTURE
Clear separation. Autonomous micro services within the
rules and constraints of the macro architecture.

AWS FIRST
Favor AWS platform service over managed service,
over self-hosted OSS, over self built solutions.

DATA-DRIVEN/METRIC-DRIVEN
Collect business and operational metrics. Analyze, alert
and act on them.

ELIMINATE ACCIDENTAL COMPLEXITY
Strive to keep it simple. Don’t over-engineer.
Focus on necessary domain complexity.

AUTONOMOUS TEAMS
Make fast local decisions. Be responsible. Know your
boundaries. Share findings.

INFRASTRUCTURE AS CODE
Automate everything: Reproducible, traceable, auditable
and tested. Immutable servers.

CROSS-FUNCTIONAL TEAMS
Engineers from all backgrounds work together in
collaborative teams as engineers and share
responsibilities. No silos.

BE BOLD
Go into production early. Value monitoring over tests.
Fail fast, recover and learn. Optimize for MTTR not MTBF.

SECURITY, COMPLIANCE AND DATA PRIVACY
Build with least privilege and data privacy in mind.
Know your threat model. Limit blast radius.

COST EFFICIENCY
Run your segment in the right balance of cost and value.

ONE SCOUT IT
Foster collaboration. Harmonize and standardize tools.
Pull common capabilities into decoupled platform services.

Version 2.0
Icons made by Freepik from www.flaticon.com are licensed under CC BY 3.0

BEST TALENT
Autonomy, purpose and mastery: We know why we do
things, we decide how to approach them and deliberately
practice our skills.

AWS FIRST
Favor AWS platform service over managed service,
over self-hosted OSS, over self built solutions.

AutoScout24 Logging Infrastructure

Why Amazon Kinesis Streams?

• Decouple producer from consumer
• No events lost, when a consumer is not available
• Replay past events
• Buffer peak loads
• Fan out to multiple consumers

• AWS Lambda integration
• Reliable and scalable managed service

Managed Service != No Ops

• Manage capacity (shards)
• Cost optimization
• Batching

• Manage limits
• Kinesis shard limit
• Lambda concurrent executions

• Monitor metrics
• Errors
• Throttling/ Lag

Expanded concept

Numbers ~

• Log size per day: 4 TB
• Number of events per day: 1.7 billion
• Lambda invocations per second: 3,500
• Kinesis cost per month: $1,700
• Lambda cost per month: $1,700

AutoScout24 Real-time Statistics - Concept

AutoScout24 Real-time Statistics - Architecture

AutoScout24 Listings pipeline

Use case:
• Stream listing changes.
• Only interested in latest version a listing.
• Time-based retention not useful.
Solution Kafka
• Record based retention: Log compaction
• No managed service: Need to operate a cluster.

Thank you!

